
Chapter 5
Strictly Bandlimited Modulations with

Large Envelope Fluctuation
(Nyquist Signaling)

Nyquist signaling schemes, which by the very nature of their construction are
strictly bandlimited, clearly result in the most bandwidth-efficient modulations
of all the ones considered previously in this monograph; however, they also result
in modulations with the largest envelope fluctuation. Since the theory of Nyquist
signaling is well documented in many textbooks on digital communications, e.g.,
[1–3], we shall present here only a brief summary of the basic principles simply
as a matter of completeness. Although most of the discussion will be focussed
on single-channel binary signaling, the extension to multilevel and quadrature
signaling schemes such as QAM will be immediately obvious and will receive a
brief treatment.

5.1 Binary Nyquist Signaling
The Nyquist criterion is a condition imposed on a waveform that results in

zero ISI when a sequence of such waveforms amplitude-modulated by the data
is sequentially transmitted at a fixed data rate. Specifically, a binary Nyquist
signal is one whose underlying pulse shape, p (t), has uniform samples taken at
the bit rate, 1/Tb (i.e., herein referred to as the Nyquist rate), that satisfy

pn = p (nTb) =
1
2π

∫ ∞
−∞

P (ω) ejωnTbdω = δn =
{

1, n = 0
0, n �= 0 (5.1 1)
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Since the Nyquist criterion is derived based on the sampling theorem, the signals
to which it is applied are inherently strictly bandlimited. To see this, we proceed
as follows:

The integral in (5.1-1) can be written in terms of a partition of adjacent
radian frequency intervals of width 2π (1/Tb) = 2π (2W ), viz.,

pn =
1
2π

∞∑
k=−∞

∫ (π/Tb)(2k+1)

(π/Tb)(2k−1)

P (ω) ejωnTbdω = δn (5.1 2)

Using the change of variables v = ω − 2kπ/Tb, (5.1-2) becomes

pn =
1
2π

∞∑
k=−∞

∫ (π/Tb)

−(π/Tb)

P

(
v +

2kπ
Tb

)
ejnTb(v+[2kπ/Tb])dv

=
1
2π

∞∑
k=−∞

∫ (π/Tb)

−(π/Tb)

P

(
v +

2kπ
Tb

)
ejvnTbdv

=
1
2π

∫ (π/Tb)

−(π/Tb)

∞∑
k=−∞

P

(
v +

2kπ
Tb

)
ejvnTbdv (5.1 3)

Next, define the equivalent Nyquist channel characteristic

Peq (ω) =




∞∑
k=−∞

P

(
ω +

2kπ
Tb

)
, |ω| ≤ π

Tb

0, otherwise

(5.1 4)

i.e., all of the translates of P (ω) folded into the interval (−π/Tb, π/Tb) and
superimposed on each other. Substituting (5.1-4) into (5.1-3) gives

pn =
1
2π

∫ ∞
−∞

Peq (ω) ejωnTbdω (5.1 5)

But the inverse Fourier transform of Peq (ω) is, by definition,

peq (t) =
1
2π

∫ ∞
−∞

Peq (ω) ejωtdω =
1
2π

∫ (π/Tb)

−(π/Tb)

Peq (ω) ejωtdω (5.1 6)
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Thus, from (5.1-5) and (5.1-6), we see that the Nyquist rate samples of p (t),
namely, pn, are also the Nyquist rate samples of peq (t). Since, by the definition of
(5.1-4), Peq (ω) is a strictly bandlimited function on the interval (−π/Tb, π/Tb) =
(−2πW, 2πW ), then, from the sampling theorem,

Peq (ω) =




1
2W

∞∑
n=−∞

p
( n

2W

)
exp

(
−jn ω

2W

)
, |ω| ≤ 2πW

0, otherwise

(5.1 7a)

or equivalently

Peq (ω) =



Tb

∞∑
n=−∞

pn exp (−jnωTb) , |ω| ≤
π

Tb

0, otherwise

(5.1 7b)

However, since for zero ISI we require pn = δn, then (5.1-7b) simplifies to

Peq (ω) =



Tb, |ω| ≤

π

Tb

0, otherwise
(5.1 8)

i.e., the equivalent Nyquist channel characteristic is an ideal brick wall filter.
Finally, combining (5.1-4) and (5.1-8), we see that the Nyquist channel (Fourier
transform of the Nyquist pulse) P (ω) must satisfy

∞∑
k=−∞

P

(
ω +

2kπ
Tb

)
= Tb, |ω| ≤ π

Tb
(5.1 9)

i.e., the superposition of all the translates of P (ω) must yield a flat spectrum
in the Nyquist bandwidth (−π/Tb, π/Tb). It can also be shown that the super-
position of all the translates of P (ω) must yield a flat spectrum in the interval
((2k − 1)π/Tb, (2k + 1)π/Tb) for any k. Thus, combining the equation that
would result from this fact with (5.1-9) gives

∞∑
k=−∞

P

(
ω +

2kπ
Tb

)
= Tb (5.1 10)
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for all ω. Note that the zero ISI criterion does not uniquely specify the
pulse shape spectrum P (ω) unless its bandwidth happens to be limited to
(−π/Tb, π/Tb), in which case, it must itself be flat, since the sum in (5.1-10)
reduces to a single term, namely, k = 0. The implication of this statement is (as
we shall soon see) that there are many P (ω)’s that satisfy the zero ISI condition.

Consider now a system transmitting a baseband signal of the form s (t) =√
P

∑∞
n=−∞ anp (t− nTb) where p (t) satisfies the Nyquist condition and {an}

are binary (±1) symbols. Then, based on the above, the minimum lowpass,
single-sided bandwidth needed to transmit this signal at rate R = 1/Tb with-
out ISI is R/2 = 1/2Tb. Such transmissions occur when the equivalent channel
Peq (ω) has a rectangular transfer function or equivalently

peq (t) = p (t) =
sin

πt

Tb
πt

Tb

(5.1 11)

When the binary symbols are independent and the noise samples (spaced Tb s
apart) are uncorrelated, each symbol can be recovered without resorting to past
history of the waveform, i.e., with a zero memory receiver.

Since, in the above case, R b/s are transmitted without ISI over a baseband
bandwidth R/2 hertz, then the throughput efficiency is R (b/s)/(R/2) hertz =
2 (b/s)/hertz. To achieve this efficiency, one must generate the sin x/x pulse
shape of (5.1-11), which, in theory, is a noncausal function and extends from −∞
to ∞. This pulse shape is additionally impractical because of its very slowly
decreasing tail, which will cause excessive ISI if any perturbations from the
ideal sampling instants should occur. Stated another way, the price paid for the
extreme bandwidth efficiency achieved with this Nyquist pulse is a large variation
in the instantaneous amplitude of the pulse, resulting in a high sensitivity to
timing (sampling instant) offset.

To reduce this sensitivity, one employs more practical shapes for p (t), whose
Fourier transforms, P (ω), have smoother transitions at the edges of the band, yet
still satisfy the Nyquist condition, thereby resulting in zero ISI. As a consequence,
these waveforms will not achieve the minimum Nyquist bandwidth, as we shall
see momentarily. The raised cosine transfer function

P (ω) =




Tb, 0 ≤ |ω| ≤ π

Tb
(1− α)

T cos2
{
π

4α

[ |ω|Tb
π
− 1 + α

]}
,

π

Tb
(1− α) ≤ |ω| ≤ π

Tb
(1 + α)

0,
π

Tb
(1 + α) ≤ |ω| ≤ ∞

(5.1 12)
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with excess bandwidth αR/2 (0 ≤ α ≤ 1) (see Fig. 5-1a) satisfies the Nyquist
criterion and has a pulse shape whose tails decrease faster than the sin x/x func-
tion, i.e., they are the product of sin x/x and cos (παt/Tb) /[1− (2αt/Tb)

2] [see
Fig. 5-1(b)]. Note that these pulses are still noncausal and extend from −∞
to ∞—properties that are a direct consequence of the strict bandlimitation of
the Nyquist formulation. Since the bandwidth of this class of Nyquist pulses
is R/2 (1 + α), the price paid for improved sensitivity to timing jitter is a re-
duction of the throughput efficiency to R/ [R/2 (1 + α)] = 2/ (1 + α). Ideally
(perfect sampling), the error probability of all binary Nyquist signaling schemes
is equivalent to that of ideal binary PSK, as given by (2.6-2).

5.2 Multilevel and Quadrature Nyquist Signaling
To achieve higher throughput efficiencies, one can extend the above notions

to multilevel and quadrature signaling schemes. First, since the Nyquist criterion
does not impact the choice of levels for the data symbols, one may simply employ
an M -ary alphabet for {an}, e.g., an = ±1,±3, · · · ,± (M − 1), resulting in a
form of M -ary pulse amplitude modulation. Using the raised cosine Nyquist
pulse of (5.1-12), the throughput efficiency is increased to 2 log2M/ (1 + α). If
now one modulates independent Nyquist signals on I and Q carriers, resulting
in a form of pulse-shaped M2-QAM results, the throughput is further increased
to 4 log2M/ (1 + α). Of course, if one specifically chooses M = 4, what results
is Nyquist-pulse-shaped QPSK.
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Fig. 5-1.  The raised cosine pulse: (a) frequency function and 

(b) time function.
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